Genomic view of energy metabolism in Ralstonia eutropha H16.

نویسنده

  • Rainer Cramm
چکیده

Ralstonia eutropha is a strictly respiratory facultative lithoautotrophic beta-proteobacterium. In the absence of organic substrates, H2 and CO2 are used as sole sources of energy and carbon. In the absence of oxygen, the organism can respire by denitrification. The recent determination of the complete genome sequence of strain H16 provides the opportunity to reconcile the results of previous physiological and biochemical studies in light of the coding capacity. These analyses revealed genes for several isoenzymes, permit assignment of well-known physiological functions to previously unidentified genes, and suggest the presence of unknown components of energy metabolism. The respiratory chain is fueled by two NADH dehydrogenases, two uptake hydrogenases and at least three formate dehydrogenases. The presence of genes for five quinol oxidases and three cytochrome oxidases indicates that the aerobic respiration chain adapts to varying concentrations of dioxygen. Several additional components may act in balancing or dissipation of redox energy. Paralogous sets of nitrate reductase and nitric oxide reductase genes result in enzymatic redundancy for denitrification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periplasmic α-carbonic anhydrase plays an essential role in Ralstonia eutropha CO2 metabolism

Background Carbonic anhydrase (CA) enzymes catalyze the interconversion of CO2 and bicarbonate. These enzymes play important roles in cellular metabolism such as CO2 transport, ion transport, and internal pH regulation. Understanding the roles of CAs in the chemolithotropic betaproteobacteria Ralstonia eutropha is important for the development of fermentation processes based on the bacterium’s ...

متن کامل

Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16.

Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed th...

متن کامل

Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha.

Ralstonia eutropha H16 degraded (mobilized) previously accumulated poly(3-hydroxybutyrate) (PHB) in the absence of an exogenous carbon source and used the degradation products for growth and survival. Isolated native PHB granules of mobilized R. eutropha cells released 3-hydroxybutyrate (3HB) at a threefold higher rate than did control granules of nonmobilized bacteria. No 3HB was released by n...

متن کامل

Transcriptional regulation of nitric oxide reduction in Ralstonia eutropha H16.

Nitric oxide reduction in Ralstonia eutropha H16 is catalysed by the quinol-dependent NO reductase NorB. norB and the adjacent norA form an operon that is controlled by the sigma(54)-dependent transcriptional activator NorR in response to NO. A NorR derivative containing MalE in place of the N-terminal domain binds to a 73 bp region upstream of norA that includes three copies of the putative up...

متن کامل

Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16.

The gene loci ehyAB, calA, and calB, encoding eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase, respectively, which are involved in the first steps of eugenol catabolism in Pseudomonas sp. strain HR199, were amplified by PCR and combined to construct a catabolic gene cassette. This gene cassette was cloned in the newly designed broad-host-range vector p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular microbiology and biotechnology

دوره 16 1-2  شماره 

صفحات  -

تاریخ انتشار 2009